
CoAggregator: User-Driven Approach to Web Aggregation

Svitlana Vakulenko
Graduate School of Computer Science

Saarland University
66123 Saarbrücken, Germany

s9svvaku@stud.uni-saarland.de

Sudhir Agarwal
Institute for Applied Informatics and Formal

Description Methods (AIFB)
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
sudhir.agarwal@kit.edu

ABSTRACT
For increasingly sophisticated use cases an end user needs
to extract, combine, and aggregate information from var-
ious (dynamic) web pages belonging to different websites.
Current search engines do not focus on combining the in-
formation from various web pages in order to answer the
overall information need of the user. Semantic Web and
Linked Data usually take a static view on the data and rely
on providers’ cooperation. Web automation scripts, initially
developed for testing websites, allow end users to capture
their browsing activities as executable processes and share
them with other end users. Web aggregators promise to find
best offers on the market in order to save money and time
of the customers. However, the web aggregators are opaque
and thus hard to trust for end users regarding complete-
ness of the results and fairness of the ranking. Furthermore,
when there are more than one aggregator for one domain
end users face the same problem of aggregating their results
manually. Web automation scripts, initially developed for
testing websites, allow end users to capture their browsing
activities as executable processes and share them with other
end users. In this paper, we present a script-based approach
for allowing end users to collaboratively create information
aggregators.

Keywords
Semantic Web, end user development, web aggregation, crowd-
sourcing, the Deep Web.

1. INTRODUCTION
For many practical purposes end users need information

that is scattered across multiple websites. Static websites
can be reached and their content can be indexed by the
crawlers of state of the art search engines. Search engines
results often contain links to web pages with similar content
even though the information need of the user might require
pages with complementary information. In order to obtain
the required information an end user needs to pose multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

queries to a search engine, browse through the hits, and
aggregate the required information fragments outside of the
found web pages. The case of dynamic websites to access
the information in the Deep Web [2] is even more complex
and still an open challenge for search engines since it is hard
for automatic crawlers to sensibly interact with the dynamic
websites. Furthermore, indexing such information is not a
suitable technique since the information underlying dynamic
websites changes so rapidly that the index becomes quickly
outdated.

In contrast to search engine crawlers, end users are able
to reach the dynamic web pages. Information retrieval has
focused on analyzing such click trails of millions of end users
mainly for the purpose of improving web search results.
Click trails can be used as endorsements to rank search re-
sults more effectively [3], trail destination pages can them-
selves be used as search results [10], and the concept of tele-
portation can be used to navigate directly to the desired
page [9]. Similarly, large-scale studies of web page revisita-
tion patterns [1] focus on how often users revisit the same
page, while ignoring how people get there. The statistics
based click analysis methods typically do not consider se-
mantics of user queries and pages. As a result, a frequently
used and thus recommended path may not necessarily sat-
isfy the information need, and end users still require to figure
out themselves which of the recommended web pages are ac-
tually relevant for them and which interactions are required
with which web pages.

Web aggregators promise to find best offers on the market
in order to save money and time of the customers. However,
the web aggregators also have some limitations from the
point of view of end users. (i) are opaque and thus hard to
trust for end users regarding completeness of the results and
fairness of the ranking. (ii) when there are more than one
aggregator for one domain end users face the same problem
of aggregating their results manually .

The automated wrapper generation tools for the Deep
Web [8] are restricted for one-step web processes that consist
of one web-form and one response page. In many profes-
sional scenarios the processes for gathering required infor-
mation require multiple user interactions such as multiple
form submission with web-sites.

OXPath [7] and CoScripter [4] record user actions on the
web for further reuse and information extraction. Web au-
tomation scripts, initially developed for testing websites,
allow end users to capture their browsing activities as ex-
ecutable processes and share them with other end users.
Number of scripts in public repositories prove that users are

interested in developing and using web automation scripts
(Greasemonkey script repository1 currently has more than
80,000 scripts, IBM CoScripter repository2 - almost 6,000
scripts). However, the larger repository grows the more dif-
ficult it becomes to locate useful scripts. It is often easier to
create a new script than find and reuse existing one. This
leads to unnecessary duplication, decreases reuse and col-
laborative development of scripts. Moreover multiple site-
specific scripts may have the same goal and it is useful to in-
tegrate them. However, such scripts, created by distributed
authors, are heterogeneous and, therefore, are hard to in-
tegrate. Our system goes beyond this scope and offers se-
mantic script integration for aggregation of information ex-
tracted from different web sites.

Our Contribution: We introduce a platform that equips
script authors with common semantics and enables easy
interface-based script integration. In this way script repos-
itory turns into semantically aware mash-up application.
We demonstrate how such a system shall be used for real-
time information extraction from the Deep Web [2] sources.
Moreover, our approach provides an incentive to the end
users to contribute to the shared repository because of the
added value of reusing existing scripts alongside the new
scripts.

In our demonstration we provide an example in a travel-
ing domain where all scripts aim at extracting the cheapest-
priced ticket using different web sources given an itinerary.
Other use cases for web aggregation vary through all the
search domains and may include car rental, shopping, library
services. For each of this domain a full-fledged ontology and
a stand-alone access point (hub) shall be designed, although
they may be also integrated on the semantic level and share
common functionality (e.g. input/output formatting meth-
ods). The scripts are to be centered around such hubs in
order to classify and meaningfully interconnect them.

2. COAGGREGATOR: A TOOL FOR END
USER INFORMATION AGGREGATION

We propose a system that supports information extraction
and aggregation by automating some of the tedious steps.
The system can also be applied to the so-called web pro-
cesses, which are rather typical for modern e-commerce web-
sites, and may cause state change. Sample use case scenarios
to be listed include: car rental, ticket/hotel reservation, best
offer search processes. The main aim of the proposed sys-
tem is a separation into a centralized server-side knowledge
base of scripts and a client-side toolkit to allow personalized
information extraction from the original sources in real time.

2.1 Formalization of Scripts
An end user browsing process is a sequential process that

coordinates the execution of multiple websites. An end user
has a local knowledge base, and the browsing activities that
an end user carries out can be categorized into input, output,
and local (w.r.t. to the end user knowledge base) actions.
An input action causes addition of knowledge from a website
into the knowledge base, the output activity emits (without
deleting) knowledge from the knowledge base to a website,
and a local action causes changes in the knowledge base in-
dependent of the websites such as deletion or alignment of

1http://userscripts.org
2http://coscripter.researchlabs.ibm.com

knowledge. Such browsing processes can be easily modeled
by a process algebra such as π-calculus [5] with the syntax
0 | c[x].P | c〈y〉.P | τ.P , where 0 denotes the process that
does nothing and used as termination symbol, c[x].P denotes
a process that inputs some values along the channel c, binds
them to vecx, and then behaves like the process P , c〈y〉.P
denotes a process that outputs values y along the channel c,
and then behaves like the process P , and finally τ.P denotes
a process that performance a local action, and then behaves
like the process P . A local action is an action performed
by the end user in his/her local knowledge base in order to
structure the knowledge as per user’s needs. The set of local
actions available to an end user depends on the data model of
the knowledge base, e.g. a relational model will allow differ-
ent operations than a graph based model. In order to allow
semantic reasoning about the values of the process we an-
notate them with a domain ontology OD expressed in ALC
(attributive concept language with complements) [6]. E.g.,
input parameters x and the communication channel c of an
input activity are process resources and further described in
OD. With ALC we can describe not only the types of pro-
cess variables but also their relationships with other process
variables. For example, if an input activity has two param-
eters of type ’Person’, we can also describe that the first
person should be father of the second person. Precisely, the
local knowledge modeled as ABox of ALC can be modified
by adding or removing following types of axioms: (i) add
sameAs relation between two individuals, (ii) add typeOf
relation between an individual and a concept, (iii) domain
specific relationships between two individuals (object prop-
erties), and (iv) relationships between an individual and a
literal (data properties) .

2.2 Script-based Aggregation
Each script fulfills a certain purpose. For sophisticated

and complex requirements many scripts need to be com-
bined and their execution need to be coordinated. A co-
ordination process (also referred to as a hub) is a sequen-
tial process that invokes its component scripts. Formally,
a coordinating process can be seen as a process running in
parallel to its component scripts. The composition of a co-
ordinating process C with its component scripts P1, . . . , Pn

can be described with the help of the composition operator
as C ‖ P1 ‖ . . . ‖ Pn. The variables of the coordinating
process and variables of the component scripts are anno-
tated with semantically aligned domain ontologies in such
as way that at least automatic type checking (and ideally
checking of preconditions of input values is possible). The
dataflow between coordinating process and the component
scripts takes place by connecting an input (output) activity
of the coordinating process with an output (input) activity
of a script. The local activities of a coordinating process
can be deterministic computation procedures such as MIN,
MAX, AVERAGE, COUNT etc. The order of the activi-
ties of the coordinating process determines the order of the
overall process that an end user executes.

2.3 Implementation
Figure 1 illustrates the conceptual architecture of CoAg-

gregator. An end user interacts with a web page which con-
sists of a web form. For each source chosen by the user the
web page (hub) issues a request to the repository and returns
specification of a script (name, url, input and output vari-

Figure 1: Conceptual Architecture of CoAggregator

ables) which automates access to the particular web source.
This information is used in order to start web automation
extension provided with script url containing user input from
the web form as values for the script variables. On the next
step extension fetches script body from the repository and
executes the script. If execution was successful it will return
extracted information back to the web page where it will be
automatically placed in a result table below the form.

2.3.1 Webform-based Front-end
CoAggregator interface provides functionality for the real-

time search and contribution to the repository of script. The
search form consists of the necessary fields for the request
to be submitted and multi-choice field for the sources to be
queried, which constitute the number of scripts available for
the aggregation.

Webform interface reflects content of the underlying ontol-
ogy in a more usual for the user way, as names for the form
fields. The scripts are grouped around the domain-specific
hub web page according to their use/semantics (goal or the
output they return and input they consume). In-built func-
tions are to be provided in order to allow presentation of the
same semantic context with different masks applied. For ex-
ample, date formats, translation, upper/lower case for the
textual inputs.

The following steps are required in order to integrate a
new script into the system: (i) Create script with CoScriptor
(record/edit); (ii) Name variables according to the naming
convention used in the system (look up corresponding field
heads in the web-form); (iii) Register script in the system
(provide script name and url).

2.3.2 Technologies used for Implementation
The knowledge base (meta repository) is implemented as

a Virtuoso triple store storing RDF files on a server and
accessible through a SPARQL end-point. The system may
reuse public IBM CoScripter repository, which enables col-
laborative script editing in a form of a wiki. Scripts are

stored as a plain textual files in JSON format.
Web aggregator is implemented as a JavaScript-enabled

web page. The page invokes and exchanges data with a
browser automation extension (IBM CoScripter v.2.210 for
Mozilla Firefox, extended with a listener to the events com-
ing from our web page), which executes the scripts. GeoN-
ames API is used for the look up of valid city, country
names and IATA codes for the nearby airports. Date For-
mat JavaScript function 3 was reused for transforming be-
tween different date formats. Such built-in functions help to
uniquely identify entities and automatically translate them
into other formats used on actual web-sites. The scope of
web sources that can be aggregated by our prototype is cur-
rently limited to HTML/JavaScript-based web pages.

3. DEMO DESCRIPTION
CoAggregator interface provides functionality for the real-

time search and contribution to the repository of script. The
search form consists of the necessary fields for the request
to be submitted (destination/departure/date in the trav-
eling domain) and multi-choice field for the sources to be
queried, which constitute the number of scripts available for
the aggregation.

Show case 1: Flight search. A user specifies a search
query and chooses the web-sites to search on (the scripts).
After pushing the ”Search” button no more actions from the
user is required. All the possible combinations of the pro-
vided search parameters will be used as an input for each
of the scripts corresponding to particular web sources. The
system will automatically fetch (screen scrape) data from
the chosen web sites in real time.

The scripts simulate user actions on the web form inter-
face (filling the input fields and button clicking) as fast as
possible and wait for the web site response. Thus, the accu-
mulated waiting time comes from the server responds and
depends on the server, which can not be avoided in the case
of manual interaction also. The main benefit provided by
the tool is that it automates repetitive actions of refilling
similar web forms with the same information all over again.
The user is free to monitor the search process or use this
loading time for any other activity, while script execution
is run in the meantime in the background using the input
data provided on the previous step. Though, the automated
script execution can be interrupted at any time by a user or
automatically, for example, when the web process requires
a user input, e.g. entering a CAPTCHA to prevent access
to the data by automated crawlers. This is another reason
in favor of personalized script execution as opposed to bulk
information gathering by the 3rd party aggregation servers.

After the system finished execution all the results ex-
tracted from the original websites are automatically placed
in the result table on the initial web page below the query
web form. Single result table makes analysis of the output
information easier and more efficient bringing it together in a
single format, for example, the same currency or time units.
The ”Buy!” button brings the user one click away from the
original source web-site where (s)he can purchase a ticket of
the corresponding itinerary. The script is rerun again with
the corresponding ticket itinerary and stopped at the final
point where more information, e.g. data of a credit card, is
required from the user to proceed.

3(c) 2007-2009 Steven Levithan MIT license

Figure 2: Adding a new script to an existing aggre-
gator

Show case 2: Adding a new script. Any user is free
to contribute and integrate new scripts into the system au-
tomating information retrieval from other web sources. In
order to do this the user creates a script - a sequence of
user actions. User toggles the web browser extension into
recording mode and shows a sample session of user interac-
tion with a web site for the sake of extracting certain infor-
mation piece. It concluded with marking the extraction area
and saving it into an output script variable (the information
goal).

Then, the user substitutes actual values with names of the
corresponding input variables using the naming convention
imposed by the system. Figure 2 shows the integration of a
new script in an existing aggregator for the domain of flight
ticket offers. The web form provides the intuition behind the
variable use as it initially collects the input data from the
user and passes it on to the scripts. Names in front of the
form fields suggest user the appropriate names for the script
variables. However, difference between the data format con-
sumed by the script has to be explicitly specified using the
built-in transformation functions which are connected to the
web form. Field name will be automatically updated when
user adjusts the appropriate input format. By linking to the
hub variables, the script obtains semantic descriptions for its
own variables in terms of domain ontology, which provides
a single non-ambiguous view on variable semantics.

The user provides script ID that helps system to locate
the script in the repository. The system automatically ex-
tracts names of the variables from the body of the script,
generates the corresponding script profile (semantic descrip-
tion) and adds it to the knowledge base. The web aggregator
main page, when refreshed, lists also the newly added script,
which now can be used along with the other existing scripts.

4. CONCLUSION AND OUTLOOK
We proposed design of a web aggregator that is shaped by

a user community itself. End users get the opportunity to
control web aggregation process and extend it to new web
sources. Our approach provides an incentive for the end
users to contribute to the common repository as they gain
value from using their own scripts alongside other scripts.

Semantically enhanced scripts accumulated by CoAggre-
gator can be reused and automatically processed. For exam-
ple, semantic description of script variables enables semantic
search for scripts by type of information they consume and
provide, which is more efficient than a keyword-based search
in a script repository. CoAggregator automates direct inter-
action between the web source and the end user avoiding
mediation through a 3rd party aggregator web site. More-
over, script integration is easy and information retrieval pro-
cess is transparent for the end users. Hence, users are able
to monitor the execution process in real time to assure the
origin and actuality of the retrieved information.

Our solution may be enhanced with automated meth-
ods for web process discovery and composition. However,
we want to emphasize the role of crowd-sourcing as a way
to equip the system with human-friendly interface for exe-
cutable how-to knowledge exchange and fault tolerance.

5. REFERENCES
[1] Eytan Adar, Jaime Teevan, and Susan T. Dumais.

Large scale analysis of web revisitation patterns. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages
1197–1206. ACM, 2008.

[2] Michael K. Bergman. The deep web: Surfacing hidden
value. The Journal of Electronic Publishing, 7(1),
2001.

[3] Mikhail Bilenko and Ryen W. White. Mining the
search trails of surfing crowds: identifying relevant
websites from user activity. In Proceedings of the 17th
international conference on World Wide Web, WWW
’08, pages 51–60. ACM, 2008.

[4] Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. Coscripter: automating & sharing how-to
knowledge in the enterprise. In Proceedings of the 26th
annual SIGCHI conference on Human factors in
computing systems, CHI ’08, pages 1719–1728, New
York, NY, USA, 2008. ACM.

[5] Robin Milner, Joachim Parrow, and David Walker. A
Calculus of Mobile Processes, Parts I and II. Journal
of Information and Computation, 100:1–77, 1992.

[6] Manfred Schmidt-Schauß and Gert Smolka.
Attributive concept descriptions with complements.
Artif. Intell., 48(1):1–26, 1991.

[7] Andrew Jon Sellers, Tim Furche, Georg Gottlob,
Giovanni Grasso, and Christian Schallhart. Taking the
oxpath down the deep web. In EDBT, pages 542–545,
2011.

[8] Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi
Gilleron, and Marc Tommasi. Automatic wrapper
induction from hidden-web sources with domain
knowledge. In WIDM, pages 9–16, 2008.

[9] Jaime Teevan, Christine Alvarado, Mark S. Ackerman,
and David R. Karger. The perfect search engine is not
enough: a study of orienteering behavior in directed
search. In CHI, pages 415–422, 2004.

[10] Ryen W. White and Jeff Huang. Assessing the scenic
route: measuring the value of search trails in web logs.
In Proceeding of the 33rd International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR), pages 587–594. ACM,
2010.

