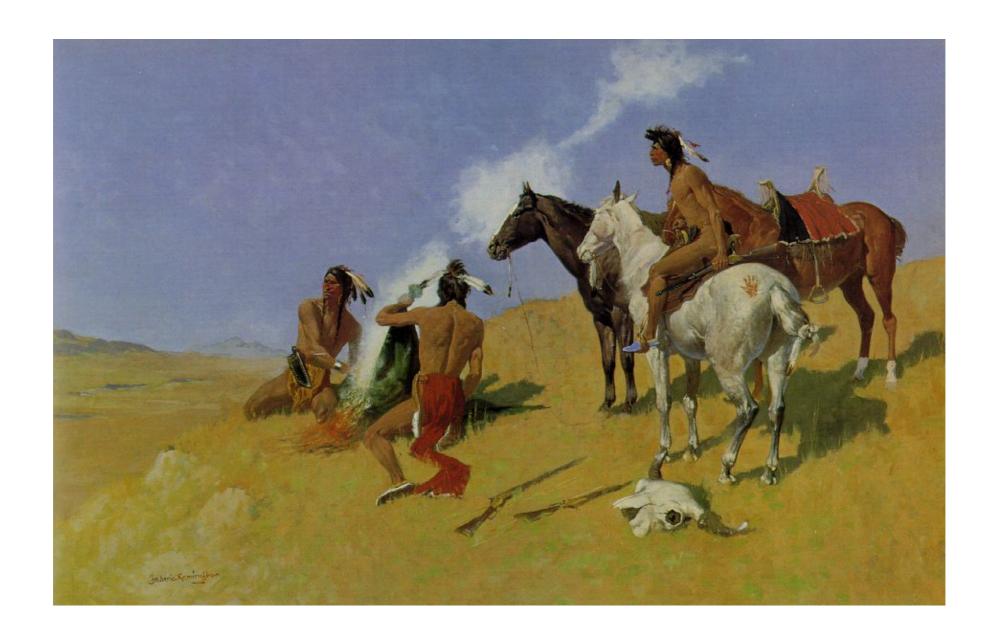


Conversational Question Answering at Scale

Svitlana Vakulenko

Communication



Knowledge

Telecommunication

★ Computer-mediated communication

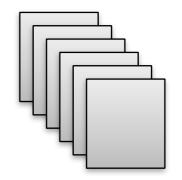
- ★ Real-time long-distance
- **★** Information repository
 - **★** Distributed system
 - **★** Individual navigation

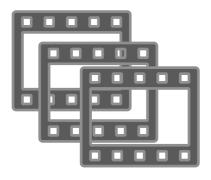
Information Retrieval

- **★** Search
- **X** Recommendation

Ranking Task

- **≭** Top-k matches by
 - **X** Relevance
 - **★** Similarity





X Communication

- **X** Communication
 - * Needs

- **X** Communication
 - * Needs
 - **★** Values/Preferences

- **X** Communication
 - **X** Needs
 - **★** Values/Preferences
 - **★** State of knowledge

- **X** Communication
 - **X** Needs
 - **★** Values/Preferences
 - **★** State of knowledge
 - **X** Context

X Communication

★ News & Social Media

* Needs

× Education

★ Values/Preferences

* Science

★ State of knowledge

x eCommerce

X Context

× Healthcare

Mooers' Law

"An information retrieval system will tend not to be used whenever it is more **painful** and **troublesome** for a customer to have information than for him not to have it."

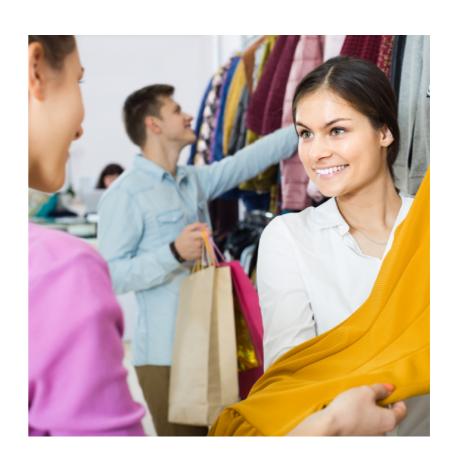
Mooers, C. N. (1959). Mooers' Law, or Why Some Retrieval Systems Are Used and Others Are Not. American Documentation, 11(3).

Search Interfaces

Q

Information Seeking Dialogue

- **★** Negotiation
- **★** Information Need
- **★** Anomalous State of Knowledge
- **★** Dynamic process



Summary

- **★** Human-Al collaboration
 - * requires efficient communication

- ★ Natural language dialogue
 - **x** -> Intuitive & powerful interface

Conversational Search

★ Automate information-seeking dialogues

- ★ Interactive IR using natural language
 - ★ Natural Language Understanding

Q: Where is Xi'an?

A: Shaanxi, China

Q: What is its GDP?

A: 932.12 billion yuan

Q: What is the share in the province GDP?

A: 41.8%

Q: Where is Xi'an?

A: Shaanxi, China

Q: What is its GDP?

A: 932.12 billion yuan

Q: What is the share in the province GDP?

A: 41.8%

Anaphora

Ellipsis

$$f(Q_i, H_i, D) \rightarrow \langle s, e \rangle$$

Input for turn *i*:

$$f(Q_i, H_i, D) \rightarrow \langle s, e \rangle$$

- ullet question Q_i
- history $H_i = [A_{i-1}, Q_{i-1}, ..., Q_{i-j}]$
- document D

Output for turn i:

- start position $s \in \mathbb{Z} : s \in [0, n]$
- end position $e \in \mathbb{Z} : e \in [0, n]$

Conversational QA at Scale

Q: Where is Xi'an?

A: Shaanxi, China

Q: What is its GDP?

A: 932.12 billion yuan

Q: What is the share in the province GDP?

A: 41.8%

Xian (西安 Xī'ān, pron. SHE-ahn), is a historic city in <mark>Shaanxi, China</mark>.

https://wikitravel.org/en/Xian

Last year, **Xi'an**'s annual gross domestic product (**GDP**) hit **932.12 billion yuan**

https://govt.chinadaily.com.cn/s/202003/25/...

Xi'an is the largest economy of the Shaanxi province, with GDP of RMB 324.1 billion in 2010, up 14.5 percent year-on-year, and accounting for approximately 41.8% of the province's total.

https://www.ucanews.com/directory/dioceses/...

Question Rewriting

Q: Where is Xi'an?

A: Shaanxi, China

Q: What is its GDP?

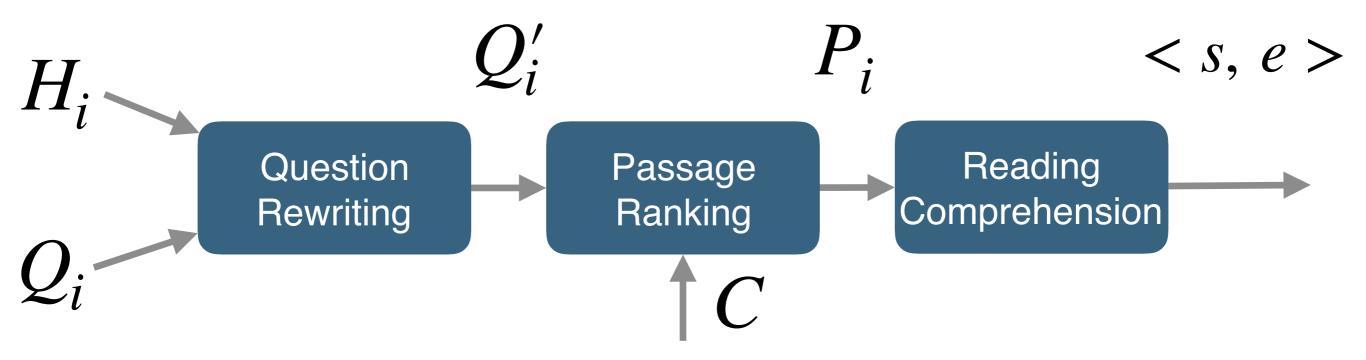
A: 932.12 billion yuan

Q: What is the share in the province GDP?

A: 41.8%

What is the share of Xi'an in the Shaanxi province GDP?

Architecture

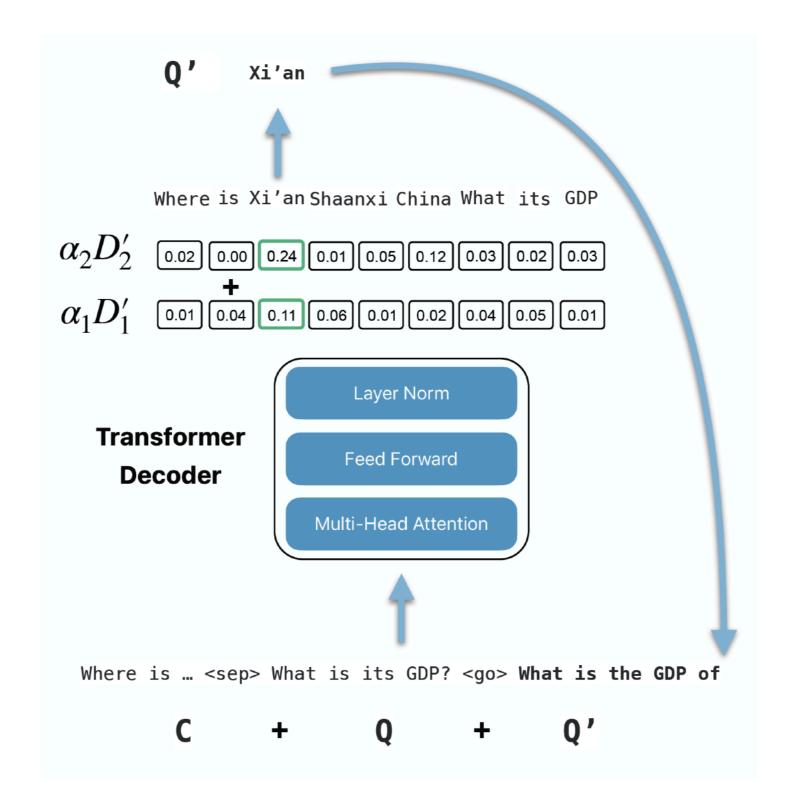


- ullet rewritten question Q_i'
- passage collection C
- ullet top-k relevant passages $\,P_i\,$

Question Rewriting Model

- **★** Generative model (GPT2)
- **X** NLL loss
- f Recursively generate Q_i' token by token
- **★** Teacher forcing (ground truth)

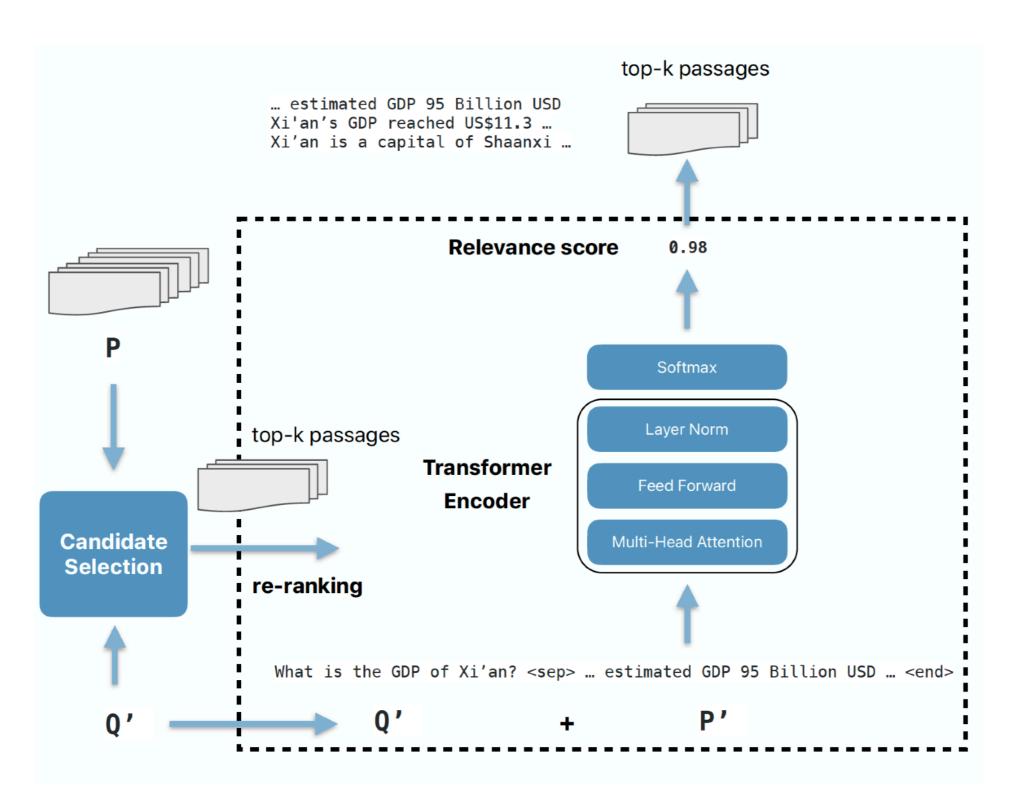
Question Rewriting Model



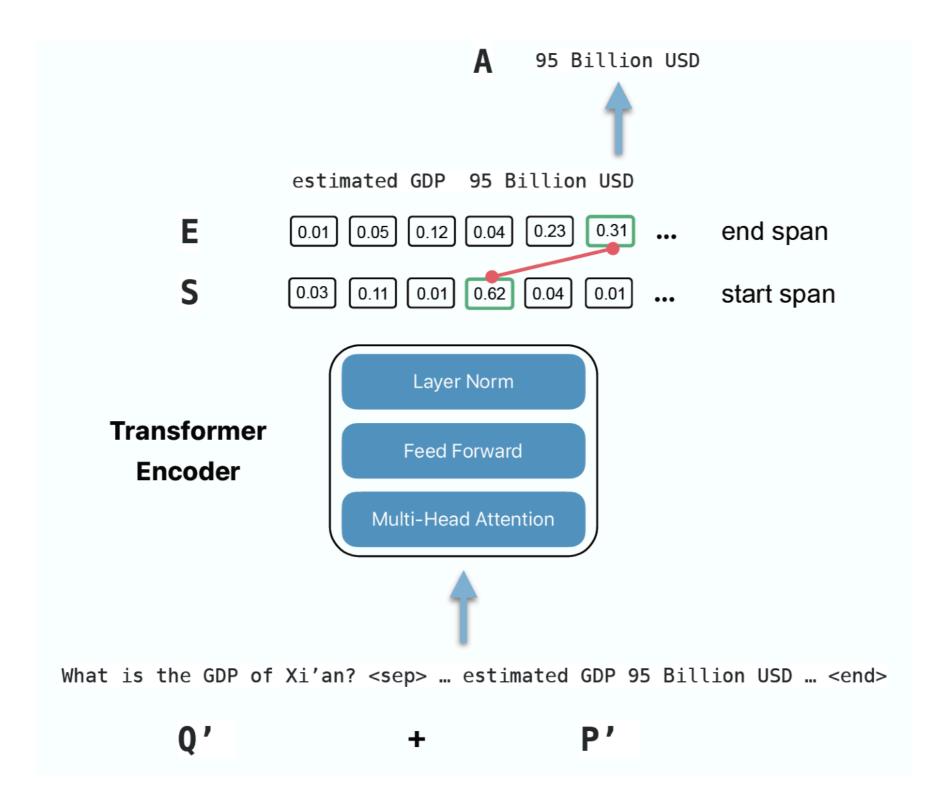
Passage Ranking Model

- **★** Initial retriever (BM25)
 - **★** Unsupervised
- **★** Re-ranker (BERT)
 - ★ Classification model

Passage Ranking Model



Reading Comprehension Model



30

Experimental Evaluation

- **★** QR: CANARD (Elgohary et al., 2019): **35K** Qs
- ★ Conversational Passage Ranking
 - **★** TREC CAsT 2019 (Dalton et al., 2019): **173** Qs
- ★ Conversational Reading Comprehension
 - **★** QuAC (Choi et al., 2018): **35K** Qs

TREC CAsT 2019

QA Input	QA Model	MAP	MRR	NDCG@3
Original	Anserini	0,172	0,403	0,265
Original +1-DT*	+BERT	0,230	0,535	0,378
Original +2-DT*		0,245	0,576	0,404
Original +3-DT*		0,238	0,575	0,401
Co-reference		0,201	0,473	0,316
PointerGenerator		0,183	0,451	0,298
CopyTransformer		0,284	0,628	0,440
Transformer++		0,341	0,716	0,529
Human		0,405	0,879	0,589

QuAC

QA Input	QA Model	EM	F1	NA Acc
Original	MultiQA —>	41,32	54,97	65,84
Original +1-DT	CANARD-H	43,15	57,03	68,64
Original +2-DT		42,20	57,33	69,42
Original +3-DT		43,29	57,87	71,50
Co-reference		42,70	57,59	66,20
PointerGenerator		4193	57,37	63,16
CopyTransformer		42,67	57,62	68,02
Transformer++		43,39	58,16	68,29
Human		45,40	60,48	70,55

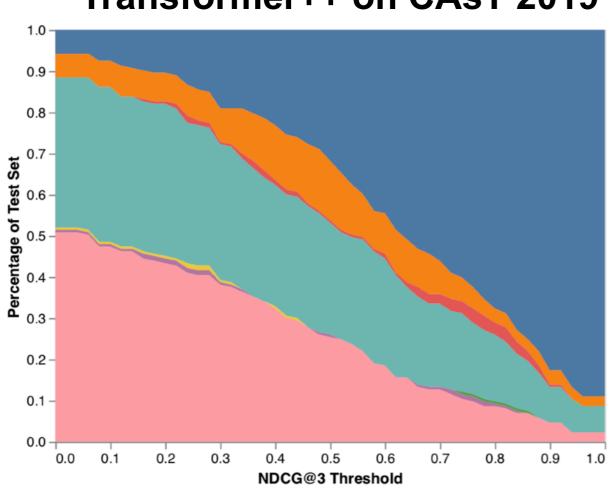
QReCC Dataset

- **★** 14K conversations with 81K question-answer pairs
- **★** 10M web pages (split into 54M passages)
- * instructed to produce conversational answers

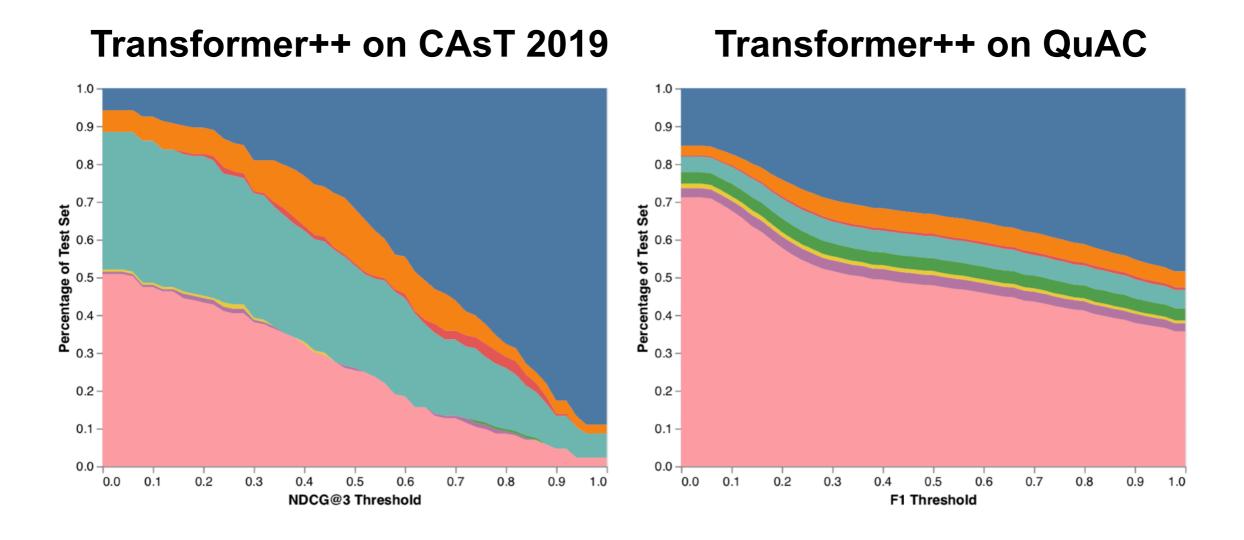
QReCC Dataset

Setting	Rewrite Type	F1	EM
End-to-End	Original	11.78	0.49
	Transformer++	19.07	0.94
	Human	21.81	1.19
Known Context	Original	17.24	1.90
	Transformer++	32.34	4.04
	Human	36.42	4.70
Extractive Upper	74.47	24.42	

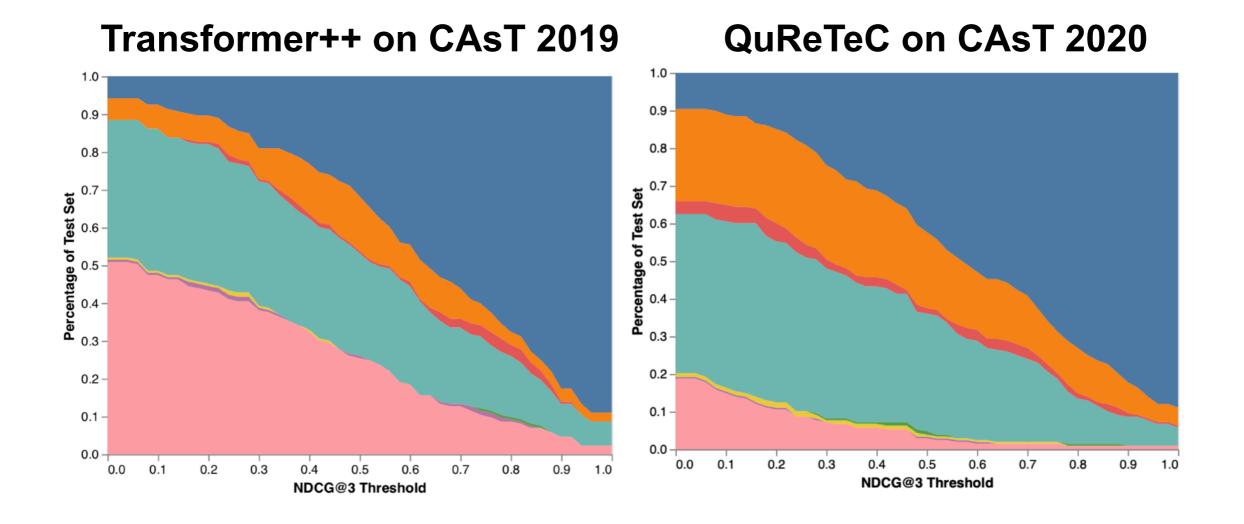
Error Analysis



CAsT 2019 vs QuAC



CAsT 2019 vs CAsT 2020



Summary

- **X** Modular
 - * Reusable
 - **★** Cross-platform
 - **★** Debuggable
 - **X** Cheap

QA model

References

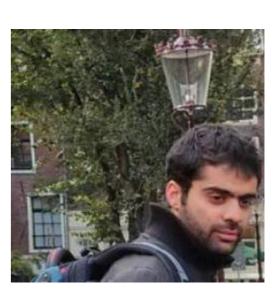
- 1.Svitlana **Vakulenko**, Zhucheng Tu, Shayne Longpre: Question Rewriting for Conversational Question Answering. WSDM. 2021. (To appear)
- 2.Svitlana **Vakulenko**, Shayne Longpre, Zhucheng Tu, Raviteja Anantha: A Wrong Answer or a Wrong Question? An Intricate Relationship between Question Reformulation and Answer Selection in Conversational Question Answering. SCAI@EMNLP. 2020. **Best paper award**.
- 3. Svitlana **Vakulenko**, Nikos Voskarides, Zhucheng Tu, Shayne Longpre. Leveraging Query Resolution and Reading Comprehension for Conversational Passage Retrieval. TREC. 2020. (To appear)
- 4. Svitlana **Vakulenko**, Nikos Voskarides, Zhucheng Tu, Shayne Longpre: A Comparison of Question Rewriting Methods for Conversational Passage Retrieval. ECIR. 2021. (To appear)
- 5.Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu, Shayne Longpre, Stephen Pulman, Srinivas Chappidi: Open-Domain Question Answering Goes Conversational via Question Rewriting. NAACL. 2021. (Under review)

My Team

MSc Shayne Longpre Apple Inc.

MSc Zhucheng Tu Apple Inc.

MSc Raviteja Anantha Apple Inc.



Dr Nikos Voskarides University of Amsterdam

TREC CAsT 2019

Run	Group	MAP	MRR	NDCG@	3				
UMASS_DMN_V2	UMass	0.082	0.300	0.100	mpi-d5_cqw	mpi-inf-d5	0.185	0.591	0.286
ict_wrfml	ICTNET	0.105	0.373	0.165	mpi-d5_igraph	mpi-inf-d5	0.187	0.597	0.287
UNH-trema-ecn	TREMA-UNH	0.073	0.505	0.222	mpi-d5_intu	mpi-inf-d5	0.240	0.596	0.289
unh-trema-relco	TREMA-UNH	0.077	0.533	0.239	ensemble	CMU	0.258	0.587	0.294
UNH-trema-ent	TREMA-UNH	0.076	0.534	0.242	bertrr_rel_q	USI	0.141	0.516	0.298
topicturnsort	ADAPT-DCU	0.136	0.555	0.259	-				
rerankingorder	ADAPT-DCU	0.137	0.564	0.259	bertrr_rel_1st	USI	0.146	0.539	0.308
combination	ADAPT-DCU	0.130	0.539	0.259	UDInfoC_BL	udel_fang	0.075	0.596	0.316
datasetreorder	ADAPT-DCU	0.135	0.550	0.260	mpi_bert	mpii	0.166	0.597	0.319
VESBERT	VES	0.124	0.541	0.291	ug_cont_lin	uogTr	0.275	0.584	0.325
VESBERT1000	VES	0.204	0.555	0.304	ug_1stprev3_sdm	uogTr	0.253	0.585	0.328
$manual_indri_ql$	-	0.309	0.660	0.361	clacBaseRerank	WaterlooClarke	0.244	0.629	0.343
clacMagic	WaterlooClarke	0.302	0.687	0.411	BM25_BERT_RANKF	RUIR	0.158	0.597	0.350
clacMagicRerank	WaterlooClarke	0.301	0.732	0.411	ilps-bert-feat2	UAmsterdam	0.256	0.603	0.352
RUCIR-run1	RUCIR	0.163	0.725	0.415	BM25_BERT_FC	RUIR	0.158	0.601	0.354
ug_cur_sdm	uogTr	0.334	0.715	0.421	ug_cedr_rerank	uogTr	0.216	0.643	0.356
CFDA_CLIP_RUN1	CFDA_CLIP	0.224	0.772	0.460	clacBase	WaterlooClarke	0.246	0.640	0.360
h2oloo_RUN4	h2oloo	0.319	0.811	0.529	ilps-bert-featq	UAmsterdam	0.262	0.653	0.365
h2oloo_RUN3	h2oloo	0.322	0.810	0.531	ilps-bert-feat1	UAmsterdam	0.260	0.614	0.377
CFDA_CLIP_RUN8	CFDA_CLIP	0.361	0.854	0.560	pg2bert	ATeam	0.258	0.641	0.389
h2oloo_RUN5	h2oloo	0.352	0.864	0.561	pgbert	ATeam	0.269	0.665	0.413
CFDA_CLIP_RUN6	CFDA_CLIP	0.392	0.861	0.572	h2oloo RUN2	h2oloo			
humanbert	ATeam	0.405	0.879	0.589	_		0.273	0.714	0.434
		CFDA_CLIP_RUN7	CFDA_CLIP	0.267	0.715	0.436			

TREC CAsT 2020

Group	Run	Recall	MAP	MRR	NDCG	NDCG@3	Canonical resu	ult Method	Model size
h2oloo	h2oloo_RUN2	0.705	0.326	0.621	0.575	0.494	manual	heuristic rules	770M + 11B
h2oloo	h2oloo RUN1	0.705	0.284	0.576	0.549	0.444	manual	heuristic rules	770101 - 110
UvA.ILPS	quretecQR	0.264	0.147	0.476	0.283	0.340	automatic	end-to-end	110M + 336M
HPCLab-CNR	HPCLab-CNR-run3	0.561	0.193	0.449	0.422	0.331			
HPCLab-CNR	HPCLab-CNR-run1	0.545	0.181	0.434	0.403	0.313			
USI	hist_concat	0.475	0.160	0.424	0.354	0.281			
USI	hist_attention	0.475	0.125	0.340	0.321	0.214			
UvA.ILPS	quretecNoRerank	0.264	0.081	0.262	0.216	0.171			

On-going Work

Question-based Summarization

What is a physician's assistant?

Physician assistants work under the supervision of a physician or surgeon; however, their specific duties and the extent to which they must be supervised differ

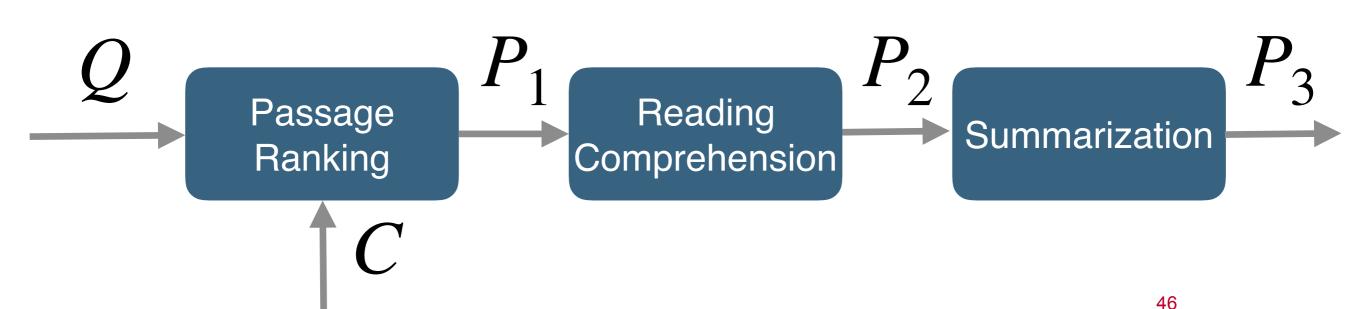
A **Physician Assistant** can deliver diagnostic, therapeutic, and preventive healthcare services, as delegated by a physician

Physician assistants, also known as PAs, practice medicine on a team under the supervision of physicians and surgeons.

Question-based Summarization

- **≭** Importance
- **X** Relevance
- **X** Diversity

MSc Weijia Zhang University of Amsterdam



Multi-hop QA

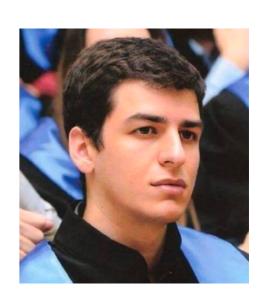
Gunmen from Laredo starred which narrator of "Frontier"?

Gunmen from Laredo is a 1959
American western film produced and directed by Wallace MacDonald, which stars Robert Knapp, Maureen Hingert, and Walter Coy.

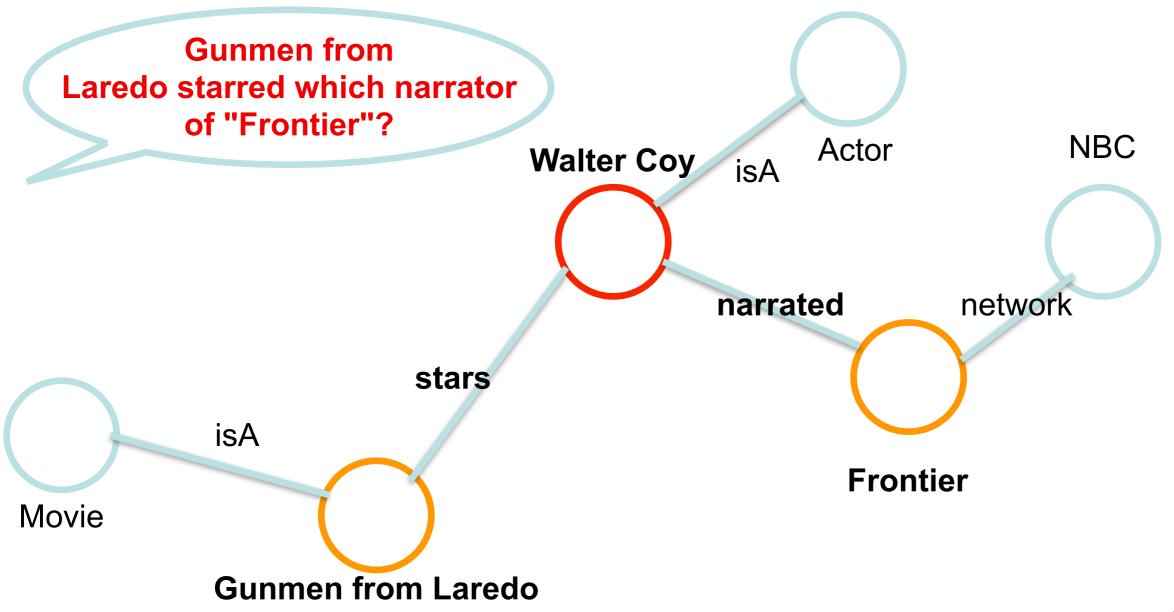
Walter Darwin Coy (January 31, 1909 – December 11, 1974) was an American stage, radio, film, and, principally, television actor, originally from Great Falls, Montana. He was best known for narrating the NBC western anthology series, "Frontier", which aired early Sunday evenings in the 1955–1956 season.

Multi-hop QA

- ★ Dense Passage Retrieval
 - **×** Efficient
 - **×** Scalable
 - **★** Generalizable



MSc Georgios Sidiropoulos University of Amsterdam



Dataset: LC-QuAD v.1

5K QA pairs

Knowledge Graph: DBpedia v. 2016-04 HDT

1B triples > 26M entities > 68K predicates

Rank	System	Precision	Recall	F1 Score	Runtime
1	QAmp Vienna University of Economics and Business, Austria Paper	0.25	0.50	0.33	0.72 s/q
2	WDAqua Université de Lyon, France Paper	0.22	0.38	0.28	1.50 s/q
-	Krantikari QA Smart Data Analytics, Germany Paper Code	TBD	TBD	TBD	

- ★ natural-language access to structured data sources
- x e.g., DBpedia, Wikidata KGs and Open Data tables

- 1.Svitlana Vakulenko, Javier D. Fernandez, Axel Polleres, Maarten de Rijke and Michael Cochez. Message Passing for Complex Question Answering over Knowledge Graphs. CIKM. 2019.
- Sophia Keyner, Vadim Savenkov and Svitlana Vakulenko. Open Data Chatbot. ESWC. 2019.
- 3. Svitlana Vakulenko and Vadim Savenkov. TableQA: Question Answering on Tabular Data. SEMANTiCS. Best paper award nominee (Poster & Demo Track). 2017.
- 4.Sebastian Neumaier, Vadim Savenkov and Svitlana Vakulenko. Talking Open Data. ESWC. 2017.

- ★ Conversational QA
- **★** Supervised model
 - **★** Learn to traverse KG
 - **★** Sampling vertices/edges

Dr Peter Bloem Vrije Universiteit Amsterdam

Inverse QA

- ★ Produce QA pairs
 - **★** Bootstrap annotation
 - **★** Dynamic evaluation

Dr Ali Bahrainian EPFL & Brown University

Inverse QA

how much does it cost to subscribe to amazon prime

does amazon prime offer free shipping

is amazon prime unlimited

can you watch amazon prime offline

amazon prime instant video

amazon prime cost per month

what is the monthly fee for amazon prime

what is **netflix** monthly cost

what is netflix tv

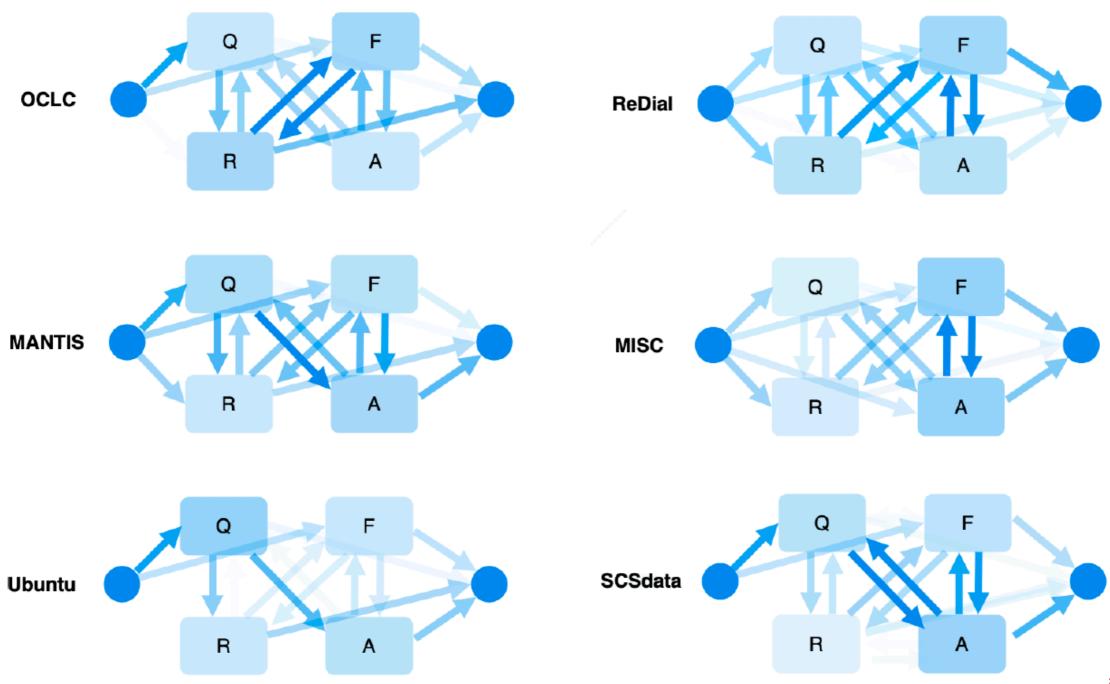
what network is **netflix**

Beyond QA

★ Understanding Interaction by Modeling Dialogue

- 1.Svitlana Vakulenko, Evangelos Kanoulas, Maarten de Rijke. A Large Scale Analysis of Mixed Initiative in Information-Seeking Dialogues for Conversational Search. TOIS. 2021. (Under review)
- 2.Svitlana **Vakulenko**, Evangelos Kanoulas, Maarten de Rijke. An Analysis of Mixed Initiative and Collaboration in Information-Seeking Dialogues. SIGIR. 2020.
- 3.Svitlana Vakulenko, Kate Revoredo, Claudio Di Ciccio and Maarten de Rijke. QRFA: A Data-Driven Model of Information Seeking Dialogues. ECIR. Best paper award (User track). 2019.
- 4. Svitlana **Vakulenko**, Maarten de Rijke, Michael Cochez, Vadim Savenkov and Axel Polleres. Measuring Semantic Coherence of a Conversation. ISWC. **Spotlight paper**. 2018.

Beyond QA



Beyond QA

★ Mixed Initiative ≠ Clarifying Questions

★ 576 reference interviews from OCLC

★ 51 clarifying questions = 3% of all questions

★ Feedback / Follow-up questions

Summary

- ★ Conversational QA is an important step towards intelligent interfaces for information access
- **★** But it is only the first step
- ★ The road ahead requires integration of expertise from multiple domains, such as IR, NLP, KR & HCI

This workshop is intended as a **discussion platform on Conversational AI for intelligent information access** bringing together researchers and practitioners across NLP, IR, ML and HCI fields. Among other topics, we will discuss design, evaluation and human factors in relation to automating information-seeking dialogues. The workshop will also feature a shared task on Conversational Question Answering.

Svitlana Vakulenko University of Amsterdam

Ondřej Dušek Charles University

Heloisa Candello IBM Research